Equilibrium

- 1. Assertion (A): For the reaction, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g), K_n = K_n$
 - **Reason (R):** K_p of all gases reactions is equal to K_p .
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **2. Assertion (A):** A net reaction can occur only if a system is not at equilibrium.
 - **Reason (R):** All reversible reactions occur to reach a state of equilibrium.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **3.** Assertion (A): For the reaction, $N_2 + O_2$ $\rightleftharpoons 2NO$, increase in pressure at equilibrium has no effect on the reaction.
 - **Reason (R):** Σ moles of gaseous product $-\Sigma$ moles of gaseous reactant = 0.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

- 4. Assertion (A): The reaction quotient, Q has the same form as the equilibrium constant K_{eq} , and is evaluated using any given concentrations of the species involved in the reaction, and not necessarily equilibrium concentrations.
 - **Reason (R):** If the numerical value of Q is not the same as the value of equilibrium constant, a reaction will occur.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 5. Assertion (A): If the equation for a reaction is reversed, the equilibrium constant is inverted and if the equation is multiplied by 2, the equilibrium constant is squared.
 - **Reason (R):** The numerical value of an equilibrium constant depends on the way the equation for the reaction is written.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **6.** Assertion (A): $K_p = K_c$ for all reactions.

Reason (R): At constant temperature, the pressure of the gas is not proportional to the concentration.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

7. Assertion (A): A catalyst does not influences the values of equilibrium constant.

Reason (R): Catalysts influence the rate of both forward and backward reactions equally.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 8. Assertion (A): For

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$. If more Cl_2 is added the equilibrium will shift in backward direction hence equilibrium constant will decrease.

Reason (R): Addition of inert gas to the equilibrium mixture at constant volume, alter the equilibrium.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 9. Assertion (A): For a reaction at equilibrium, the Gibb's free energy of reaction is minimum at constant temp. and pressure.

Reason (R): The Gibb's free energy of both reactants and products increases and become equal at equilibrium.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

10. Assertion (A): If $Q_P < K_P$ reaction moves in direction of products.

Reason (R): Reaction quotient is defined in the same way as equilibrium constant at any stage of the reaction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **11. Assertion (A):** Among HCl, H₂SO₄ and HClO₄, HClO₄ is the strongest acid.

Reason (R): HClO₄ ionizes to maximum extent when dissolved in glacial acetic acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** pH of x M HCl is less than pH of x M CH_3COOH .

Reason (R): The degree of ionization of HCl and CH₃COOH are equal at infinite dilution.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

13. Assertion (A): The degree of dissociation of a weak base increases on dilution.

Reason (R): The value of K_b increases on dilution

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. Assertion (A):** The conjugate acid base pair differ by a proton.

Reason (R): $\mathrm{NH_2}^-$ and $\mathrm{NH_4}^+$ are conjugate acid base pair.

- Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **15. Assertion (A):** Phenolphthalein is used as an indicator in the titration of weak acid with NaOH.

Reason (R): Near the end point, the pH of the solution is alkaline due to hydrolysis of anion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

16. Assertion (A): The degree of dissociation of CH₃COOH is more in a solution which is basic than in water.

Reason (R): K_a of CH_3COOH increases in basic solution.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **17. Assertion (A):** Addition of HCl (aq.) to HCOOH (aq.) decrease to ionization of HCOOH (aq.).

Reason (R): Due to common ion effect of H⁺, ionization of HCOOH decrease.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18. Assertion (A):** pH of 10⁻⁷ M HCl is less than 7 at 25°C.

Reason (R): At very low concentration of HCl, contribution of H⁺ from water is considerable.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

19. Assertion (A): Solubility of sparingly soluble salt decreases due to common ion effect.

Reason (R): Solubility product constant does not depend on common ion effect.

- Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **20. Assertion (A):** Solubility od AgCl in NH₃(aq.) is greater than in pure water.

Reason (R): When AgCl dissolve in NH₃(aq.), complex ion formation $Ag\left(NH_3\right)_2^+ \text{ takes place and solubility}$ equilibria of AgCl shifted in forward direction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 21. Assertion (A): H_3PO_3 is a dibasic acid and it's salt Na_3PO_3 does not exist.

Reason (R): Being dibasic nature, only two H are replaceable.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

22. Assertion (A): The aqueous solution of CF₃COO⁻Na⁺ is more basic than the aqueous solution of CH₃COO⁻Na⁺ for same concentration of salt.

Reason (R): The salt derived from weak acid and strong base hydrolyses to generate acidic solution.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 23. Assertion (A): According to principle of common ion effect, the solubility of HgI₂ is expected to be less in an aqueous solution of KI than in water. But HgI₂ dissolves in an aqueous solution of KI to form a clear solution.

Reason (R): Iodide ion, Γ is highly polarizable.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24. Assertion (A):** pH of HCl solution is less than that of acetic acid solution of the same concentration.

Reason (R): In equimolar solutions, the number of titrable protons present in HCl acid is less than that present in acetic acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

25. Assertion (A): On increasing temperature pH of H₂O decreases.

Reason (R): At high temperature water become acidic.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **26. ASSERTION (A):** The dissociation constant of polyprotic acid are in the order $K_1 > K_2 > K_3$.

REASON (R): The $\left[H^{+}\right]$ furnished in 1st step of dissociation exerts common ion effect to reduce 2nd dissociation and so on.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **27. Assertion (A):** A catalyst (positive) decreases energy of activation of the reaction without changing the position of equilibrium.

Reason (R): By changing the concentration of any of the reactant or product species, the position of equilibrium may change but equilibrium constant will remain the same provided temperature remains constant.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

28. Assertion (A): The equilibrium (given below) attained in a closed vessel remains unaltered by the addition of CaCO_{3(s)}

$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_2 \uparrow$$

Reason (R): The active mass of a solid is a constant and independent of its mass and is always taken to be unity.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **29. Assertion (A):** Addition of inert gas to an equilibrium mixture at constant pressure does not effect the equilibrium.

Reason (R): Addition of inert gas at constant pressure decreases the volume of equilibrium mixture.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **30.** Assertion (A): At an equilibrium $A(g) + 2B(g) \rightleftharpoons C(g)$ if substantial amount of water is added to the mixture and stated that only A(g) gets dissolved to a certain extent in water then equilibrium shifts towards forward direction.

Reason (R): On decreasing the volume of reaction mixture and keeping rest of things same the equilibrium shifts to a direction having more number of gaseous molecules.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY																			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	1	1	2	1	4	1	4	3	2	1	2	3	3	1	3	1	1	2	1
Que.	21	22	23	24	25	26	27	28	29	30										
Ans.	1	4	2	3	3	1	2	1	4	4										

